Class 12th
Chapter wise Most Important MCQ's Type Questions for Board Exams
CBSE CLASS XII
CH : 3 MATRICES (MCQ)
 Que 1. If A and B matrices are of same order and A + B = B + A, this law is known as:
A.    distributive law
B.    commutative law
C.    associative law
D.    Cramer's law
E.     Answer.  B
Que 2. A pair of equations to determine the value of 2 variables is called
A.    simultaneous linear equations
B.    paired equations
C.    quadratic equations
D.    simple equations
Answer. A
Que 3. If a matrix has equal number of columns and rows then it is said to be a
A.    row matrix
B.    identical matrix
C.    square matrix
D.    rectangular matrix
Answer. C
Que 4. If determinant of a matrix is equal to zero, then it is said to be
A.    square matrix
B.    singular matrix
C.    non-singular matrix
D.    identical matrix
Answr. B
Que 5. We can add two matrices having real numbers A and B if their
A.    order is same
B.    rows are same
C.    columns are same
D.    elements are same
Answer. A
Que 6. If the number of columns and rows are not equal in a matrix, then it is said to be a
A.    rectangular matrix
B.    square matrix
C.    diagonal matrix
D.    null matrix
Answer. A
Que 7. The methods to solve a pair of simultaneous linear equations are
A.    3
B.    2
C.    4
D.    5
Answer B
Que 8. In matrices (AB)t equals to
A.    B
B.    A
C.    At Bt
D.    Bt At  
Answer. D
Que 9. If determinant of a matrix is not equal to zero, then it is said to be
A.    non-singular matrix
B.    square matrix
C.    singular matrix
D.    identical matrix
Answer. A
Que 10. A diagonal matrix having equal elements is called a
A.    square matrix
B.    identical matrix
C.    scalar matrix
D.    rectangular matrix
Answer. C
Que 11. In matrices (A + B)t equals to
A.    At
B.    Bt
C.    At + Bt
D.    At Bt
Answer. C
Que 12. If A, B and C matrices are of same order and (A + B) + C = A + (B + C), this law is known as
A.    Cramer's law
B.    distributive law
C.    commutative law
D.    associative law
Answer. D
Que 13. If the sum of two matrices A and B is zero matrix, then A and B are said to be
A.    multiplicative inverse of each other
B.    additive inverse of each other
C.    transpose of each other
D.    determinant of each other
Answer. B
Que 14. Skew symmetric matrix is also called
A.    symmetric
B.    identical matrix
C.    square matrix
D.    anti symmetric
Answer. D
Que 15. The law which does not hold in multiplication of matrices is known as
A.    distributive law
B.    Inverse law
C.    associative law
D.    commutative law
Answer. D
Que 16. Generally the matrices are denoted by
A.    capital letters
B.    numbers
C.    small letters
D.    operational signs
Que 17. A matrix with only 1 column is called
A.    column matrix
B.    row matrix
C.    identical matrix
D.    square matrix
Que 18. We can subtract two matrices A and B if their
A.    elements are same
B.    order is same
C.    rows are same
D.    columns are same
Que 19. In matrices, the rows are denoted by
A.    A
B.    B
C.    R
D.    C
Que 20. Vertically arranged elements in a matrix are called
A.    columns
B.    rows
C.    determinants
D.    transpose
Que 21. By changing the signs of all the elements of a matrix, we obtained
A.    identical matrix
B.    negative of a matrix
C.    null/zero matrix
D.    determinant of a matrix
Ans. B
Que 22. If A and B are symmetric matrices of the same order, then
(a) AB is a symmetric matrix 
(b) A – Bis askew-symmetric matrix 
(c) AB + BA is a symmetric matrix 
(d) AB – BA is a symmetric matrix 
Answer: (c) AB + BA is a symmetric matrix
Que 23. If A is a square matrix, then A – A’ is a
(a) diagonal matrix 
(b) skew-symmetric matrix 
(c) symmetric matrix 
(d) none of these 
Ans: (b) skew-symmetric matrix
Q24. If A is any square matrix, then which of the following is skew-symmetric?
(a) A + AT 
(b) A – AT 
(c) AAT 
(d) ATA
Answer: (b) A – AT
Que25. For any square matrix A, AAT is a
(a) unit matrix 
(b) symmetric matrix 
(c) skew-symmetric matrix 
(d) diagonal matrix 
Answer: (b) symmetric matrix
Que26. If a matrix A is both symmetric and skew-symmetric, then 
(a) A is a diagonal matrix 
(b) A is a zero matrix 
(c) A is a scalar matrix 
(d) A is a square matrix 
Answer: (b) A is a zero matrix
Que27. If A2 – A + I = O, then the inverse of A is 
(a) I – A 
(b) A – I 
(c) A 
(d) A + I 
Answer: (a) I – A
Que28. Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is 
(a) 9 
(b) 27 
(c) 81 
(d) 512 
Answer: (d) 512
Que29. If A is a matrix of order m × n and B is a matrix such that AB’ and B’A are both defined, then the order of matrix B is 
(a) m × m 
(b) n × n 
(c) n × m 
(d) m × n 
Answer: (d) m × n
Que30. If A and B are matrices of the same order, then (AB’ – BA’) is a 
(a) skew-symmetric matrix 
(b) null matrix 
(c) symmetric matrix 
(d) unit matrix 
Answer: (a) skew-symmetric matrix
Que31. If A is a square matrix such that A2 = I, then (A – I)3 + (A + I)3 – 7A is equal to 
(a) A 
(b) I – A 
(c) I + A 
(d) 3A 
Answer: (a) A
Que32. Question 39. If A is an m × n matrix such that AB and BA are both defined, then B is a 
(a) m × n matrix 
(b) n × m matrix 
(c) n × n matrix 
(d) m × n matrix 
Answer: (b) n × m matrix
                                   CH : 1 RELATIONS AND FUNCTIONS (MCQ)
Que1. The function f : A → B defined by f(x) = 4x + 7, x ∈ R is 
(a) one-one 
(b) Many-one 
(c) Odd 
(d) Even 
Answer: (a) one-one Question 
Que2. The smallest integer function f(x) = [x] is 
(a) One-one 
(b) Many-one 
(c) Both (a) & (b)
 (d) None of these 
Answer: (b) Many-one Question 
Que3. The function f : R → R defined by f(x) = 3 – 4x is 
(a) Onto 
(b) Not onto 
(c) None one-one 
(d) None of these 
Answer: (a) Onto
Que4. The number of bijective functions from set A to itself when A contains 106 elements is 
(a) 106 
(b) (106)2 
(c) 106! 
(d) 2106 
Answer: (c) 106!
Que5. The maximum number of equivalence relations on the set A = {1, 2, 3} are 
(a) 1 
(b) 2 
(c) 3 
(d) 5 
Answer: (d) 5
Que6. Let us define a relation R in R as aRb if a ≥ b. Then R is 
(a) an equivalence relation 
(b) reflexive, transitive but not symmetric 
(c) symmetric, transitive but not reflexive 
(d) neither transitive nor reflexive but symmetric 
Answer: (b) reflexive, transitive but not symmetric
Que7. Let A = {1, 2, 3} and consider the relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then R is 
(a) reflexive but not symmetric 
(b) reflexive but not transitive 
(c) symmetric and transitive 
(d) neither symmetric, nor transitive 
Answer: (a) reflexive but not symmetric
Que8. Let S = {1, 2, 3, 4, 5} and let A = S × S. Define the relation R on A as follows: (a, b) R (c, d) iff ad = cb. Then, R is 
(a) reflexive only 
(b) Symmetric only 
(c) Transitive only 
(d) Equivalence relation 
Answer: (d) Equivalence relation
Que9. Let R be the relation “is congruent to” on the set of all triangles in a plane is 
(a) reflexive 
(b) symmetric 
(c) symmetric and reflexive 
(d) equivalence 
Answer: (d) equivalence Question 
Que10. Total number of equivalence relations defined in the set S = {a, b, c} is 
(a) 5 
(b) 3! 
(c) 23 
(d) 33 
Answer: (a) 5
